A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm
نویسندگان
چکیده
In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.
منابع مشابه
PMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver
In this paper, optimal placement of Phasor Measurement Unit (PMU) using Global Positioning System (GPS) is discussed. Ant Colony Optimization (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modifi...
متن کاملCompensation of Doppler Effect in Direct Acquisition of Global Positioning System using Segmented Zero Padding
Because of the very high chip rate of global positioning system (GPS), P-code acquisition at GPS receiver will be challenging. A variety of methods for increasing the probability of detection and reducing the average time of acquisition have been provided, among which the method of Zero Padding (ZP) is the most essential and the most widely used. The method using the Fast Fourier Transform (FFT...
متن کاملA Novel Technique for Steganography Method Based on Improved Genetic Algorithm Optimization in Spatial Domain
This paper devotes itself to the study of secret message delivery using cover image and introduces a novel steganographic technique based on genetic algorithm to find a near-optimum structure for the pair-wise least-significant-bit (LSB) matching scheme. A survey of the related literatures shows that the LSB matching method developed by Mielikainen, employs a binary function to reduce the numbe...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملتعیین خودکار مختصات نجومی با استفاده از تصویربرداری زنیتی از ستارگان
Celestial positioning has been used for navigation purposes for many years. Stars as the extra-terrestrial benchmarks provide unique opportunity in absolute point positioning. However, astronomical field data acquisition and data processing of the collected data is very time-consuming. The advent of the Global Positioning System (GPS) nearly made the celestial positioning system obsolete. The n...
متن کامل